

Date Planned : / /	Daily Tutorial Sheet-11	Expected Duration : 90 Min
Actual Date of Attempt : / /	Numerical Value Type	Exact Duration :

- **126.** Total number of molecules which can be hydrolysed at room temperature and hybridization of central atom is sp³d in transition state: CCl₄, SiCl₄, NCl₃, PCl₃, AsCl₃, SF₆, P₄O₆, P₄O₁₀, SeF₆
- **127.** The difference between total number of lone pairs and total number of σ -bonds in $[B_3O_3(OH)_6]^{3-1}$ molecular ion is:
- **128.** Borazine is converted into a distribution product $B_3N_3H_4X_2(p)$. Number of isomers of p would be:
- **129.** Consider the structure of Al_2Me_6 compound and find the value of $\frac{x-y}{z}$.

Where x = Maximum number of atoms that can lie in plane having terminal (Al – Me) bonds.

 $y = Total number of 3c - 2e^- bonds.$

z = Total number of atoms that are sp³ hybridized.

- **130.** Find the value of x in the tremolite asbestos : $Ca_2Mg_x(Si_4O_{11})_2(OH)_2$
- **131.** Consider the following silicates

(a) BaTi (Si_3O_9) (b) ZnCa₂Si₂O₇

Calculate $X \div Y$, where X is sum of O atoms in both molecules having one bond only and Y is sum of O atoms in both molecules having two bonds only

132. Consider $Al_2(OH)_6$ compound and calculate the value of $(X + Y) \div Z$

Where X = Total number of $(2c - 2e^{-})$ bond.

Where $Y = Total number of (3c - 2e^{-}) bond.$

Where Z = Total number of $(3c - 4e^{-})$ bond.

- **133.** Number of hydroxyl groups present in $H_4P_2O_6$ are :
- **134.** Consider the following species :

m ---!

(i) CH_3^+

(ii) $(C_3H_5)_3Al$

TiCl₄

(iii)

HCHO

(iv)

(v) $(C_2H_5)_3N$

(vi)

(vii) CO_2

(viii) SiCl₄

 CH_{4}

(ix) BF_3

Find out total number of species which can act as Lewis acid.

135. Consider the following species CF_4 , GeH_4 , BCl_3 , $AlBr_3$, H_2O , PH_3 , PCl_5 , CO_2 , CH_4 and calculate value of $(x-y)^2$.

Where, x: Total number of species which can act as only Lewis acid.

y: Total number of species which can act as Lewis acid as well as Lewis base.

- **136.** In the given reaction the value of x is _____. $B + x HNO_3 \longrightarrow H_3BO_3 + x NO_2$
- **137.** In borazine, the number of delocalized electrons are_____.
- **138.** The number of bridge chlorine in Al_2Cl_6 is_____.
- **139.** In borax number of sp² hybridised atoms are_____.
- **140.** One mole aluminium carbide reacts with water to given _____ moles of methane.